Ninth Report of the Committee on Atomic Weights of the International Union of Chemistry.

By G. P. BAXTER (Chairman), M. GUICHARD, O. HÖNIGSCHMID, and R. WHYTLAW-GRAY.

THE following report of the Committee covers the twelve-month period, September 30th, 1937, to September 30th, 1938.* Only one change has been made in the table of atomic weights, in the case of phosphorus from 31.02 to 30.98.

CARBON.—Moles and Escribano (*Compt. rend.*, 1938, 207, 66) have redetermined the densities of oxygen and carbon dioxide at different pressures :

	Ox	ygen.	Carbon	Dioxide.	
	1 Atm.	0.5 Atm.	1 Atm.	0.5 Atm.	
	1.42900	1.42832	1.97690	1.97016	
	1.42894	1.42829	1.97695	1.97011	
	1.42896	1.42828	1.97694	1.97015	
	1.42892	1.42830	1.97694	1.97013	
	1.42895	1.42828	1.97695	1.97011	
	1.42891	1.42828	1.97693	1.97016	
	1.42892	1.42831	1.97694	1.97014	
	1.42894				
	1.42895				
Average	1.42894	$1 \cdot 42829$	1.97693	1·97014	

Extrapolation to zero pressure gives the limiting densities 1.42764 and 1.96334. The molecular weight of carbon dioxide is then 44.007 and the atomic weight of carbon 12.007.

NITROGEN.—Moles and Roquero (Anal. Fis. Quim., 1937, 35, 263) have redetermined the densities of oxygen and ammonia, by an improved volumeter method. Results are referred to g = 980.665.

The Density of Ammonia.		The Density	of Oxygen.	
l Atm.	1 Atm.	0.67 Atm.	0.50 Atm.	0.33 Atm.
0.771422	1.42895	1.42856	1.42829	1.42810
0.771397	1.42898	1.42855	1.42829	1.42802
	1.42895	1.42840	1.42828	1.42800
	1.42894	1.42854	1.42830	1.42806
	1.42892		1.42826	
Average 0.771409	1.42895	1.42851	1.42828	1.42805
- B	v the method	of least square	D = 1.4276	0 + 0.001348p.

Moles (*ibid.*, p. 134) discusses critically the "limiting density" and "limiting pressure" methods of finding molecular and atomic weights and finds from data obtained earlier the following atomic weights for carbon, nitrogen, and fluorine: C = 12.007; N = 14.008; F = 18.995.

FLUORINE.—Moles and Toral (Z. anorg. Chem., 1938, 236, 225) have redetermined the densities of silicon fluoride at different pressures. The gas was prepared by (a) the pyrolysis of barium silicofluoride, (b) the method of Gay-Lussac, and after treatment to remove traces of hydrogen fluoride and moisture was resublimed a number of times. The mean values obtained in two different bulbs are :

	Density.	
760 mm.	570 mm.	380 mm.
4.69041	4.67873	4.66708
4.69049	4.67885	4.66707
4.69053	4.67875	4.66704
4.69042	4.67867	4.66699
4.69054	4.67882	4.66706
4.69051		4.66708
4.69049	4.67877	4.66705
	760 mm. 4.69041 4.69049 4.69053 4.69042 4.69054 4.69054 4.69051 4.69049	Density. 760 mm. 570 mm. 4·69041 4·67873 4·69049 4·67885 4·69053 4·67885 4·69054 4·67867 4·69054 4·67882 4·69054 4·67882 4·69054 4·67877

* Authors of papers bearing on the subject are requested to send copies to each of the four members of the Committee at the earliest possible moment : Prof. G. P. Baxter, Coolidge Laboratory, Harvard University, Cambridge, Mass., U.S.A.; Prof. M. Guichard, Faculté des Sciences, Sorbonne, Paris, France; Prof. O. Hönigschmid, Sofienstrasse 9/2, Munich, Germany; Prof. R. Whytlaw-Gray, University of Leeds, Leeds, England.

Extrapolation to zero pressure gives 4.64361 for the limiting density. The molecular weight of silicon fluoride is hence 104.085, from which, with Si = 28.065 (International value), F = 19.005, or, if Si = 28.104 [a mean value from the results of Hönigschmid (Z. anorg. Chem., 1924, 141, 101) and Weatherill and Brundage (J. Amer. Chem. Soc., 1932, 54, 3932)], F = 18.995.

PHOSPHORUS.—Hönigschmid and Menn (Z. anorg. Chem., 1937, 235, 129) have compared phosphorus oxychloride with silver and silver chloride. Commercial oxychloride, after being warmed with phosphoric oxide to remove pentachloride and fractionally crystallised to eliminate trichloride, was subjected to a series of distillations with fractionation columns in exhausted glass systems which provided for removal of head and tail fractions as well as a sample of the main portion in each distillation.

The samples for analysis, which were sealed in glass balls, were weighed in air and water and broken under ammonia in a closed flask. The glass fragments were collected and weighed, and the solution after acidification was compared with silver and silver chloride in the usual way.

The	Atomic	Weight	of	Phosphorus.
			~ /	a. 1000 p1101 0101

Fraction-		POCl _a			At. wt.	AgCl,		At. wt.
ation.	Fraction.	g.	Ag, g.	POCl ₃ : 3Ag.	Р.	ğ. 1	POCl _a : 3AgCl.	Р.
4	Middle	2.59943	5.48600	0.473830	30.979	•	• •	
7	Head	$3 \cdot 88813$	$8 \cdot 20582$	0.473826	30.978			
9	Middle	$2 \cdot 61334$	5.51549	0.473819	30.976			
10	Middle	3.05680	6.45125	0.473831	30.980			
11	Head	4.13618	8.72923	0.473831	30.980			
11	Middle	$2 \cdot 83672$	5.98674	0.473834	30.981			
11	Tail	$2 \cdot 89397$	6.10734	0.473851	30.986	8.11469	0.356634	30.985
14	Head	2.76953	$5 \cdot 84509$	0.473822	30.977	7.76609	0.356618	30 ·979
14	Middle	3.09822	6.53853	0.473840	30.983	8.68750	0.356630	30.984
14	Tail	3.93788	8.31040	0.473850	30.986	11.04238	0.356615	30.977
15	Head	3.91543				10.97914	0.356624	30.981
15	Middle	$2 \cdot 50130$				7.01398	0.356616	30.978
15	Tail	1.97687	4.17195	0.473848	30.985	5.54346	0.356613	30.977
18	Head	$2 \cdot 41931$	5.10601	0.473816	30.975	6.78422	0.356609	30.975
19	Middle	2.25215	4.75296	0.473842	30.983	6.31508	0.356631	30.984
18	Tail	3.70839	$7 \cdot 82625$	0.473840	30.983	10.39849	0.356628	30.983
19	Middle	1.90221	4.01461	0.473822	30.977	5.33387	0.356629	30.983
19	Tail	3.72114				10.43428	0·356626	30.982
			Average	e 0·473833	30.981		0.356623	30.981
			Ų					

The average value from head fractions is 30.978, that from middle fractions 30.979. Tail fractions gave slightly higher values, diminishing as the fractionation progressed. The authors believe the value 30.978 to represent the best value from their work. This value agrees very closely with that found from the density of phosphine by Ritchie (see Report for 1930). Aston gives the packing fraction of phosphorus as -5×10^{-5} . On the assumption that phosphorus is a simple element with the factor for conversion to the chemical scale 1.00027, the atomic weight is 30.976. It seems to be certain that the International value 31.02 is too high. The atomic weight of phosphorus in the table has therefore been changed to 30.98.

RUBIDIUM.—Brewer (J. Amer. Chem. Soc., 1938, 60, 691) with a mass spectroscope finds the ${}^{85}\text{Rb}/{}^{87}\text{Rb}$ ratio in natural sources to be 2.61. With the conversion factor 1.00027 and the packing fractions 8.7 and 8.9 the atomic weight of rubidium is 85.456, which is slightly lower than the International value.

RUTHENIUM.—Gleu and Rehm (Z. anorg. Chem., 1937, 235, 352) in a revision of the atomic weight of ruthenium analysed purpureo-ruthenium chloride, $[Ru(NH_3)_5Cl]Cl_2$, since this salt is stable, and crystallises well without water of crystallisation. Weighed quantities of salt, dried at 110° , were reduced at bright redness in a current of hydrogen and the resulting metal was weighed.

The purpureo-chloride, after being dried at 110° for 4 days, according to the statement of the authors is exceptionally dry and practically undecomposed, although at higher temperatures, *e.g.*, 130°, marked decomposition can be detected.

The authors estimate that uncertainty due to incomplete drying and partial decomposition may amount to 0.1-0.2% of the weight of salt.

Ru(NH ₃) ₅ Cl ₃ , g.	Ru, g.	$\operatorname{Ru}:\operatorname{Ru}(\operatorname{NH}_{8})_{5}\operatorname{Cl}_{3}.$	At. wt. Ru.
0.71170	0.24581	0.34538	101.05
0.66212	0.22872	0.34545	101.08
0.52131	0.18014	0.34555	101.13
0.37477	0.12942	0.34533	101.03
0.74003	0.25567	0.34549	101.10
0.51860	0.17916	0.34547	101.09
0.55504	0.19189	0.34572	101.21
0.57077	0.19707	0.34527	101.00
0.52431	0.18107	0.34535	101.04
0.73077	0.25247	0.34549	101.10
0.67518	0.23317	0.34535	101.04
	A	verage 0·34544	101.08

The possible uncertainty in the weight of the purpureo-chloride admitted by the authors, 0.2%, corresponds at least to 0.3 unit in the atomic weight of ruthenium. Furthermore, information given by the authors concerning the preparation of the hexammine sulphate, from which the purpureo-chloride is obtained, is meagre. Hence in view of the uncertainty in the mass spectrograph value the Committee feels that it is unwise to alter the value for ruthenium in the Table.

NEODYMIUM.—Hönigschmid and Wittner (Z. anorg. Chem., 1938, 235, 220) have compared anhydrous neodymium chloride with silver and silver chloride, using two samples of neodymium material purified by Feit (Feit and Przibylla, *ibid.*, 1905, 43, 202). Examination of the X-ray spectra by Noddack revealed not over 0.04% of any rareearth impurity. Repeated precipitation as oxalate from strongly acid solution served to remove ordinary impurities. The chloride was prepared by solution of the oxide in hydrochloric acid and precipitation with hydrogen chloride at ice temperature.

Slow dehydration at moderate temperatures in a current of dry hydrogen chloride was followed by heating to 450° in some cases, rapid fusion in others.

Comparison with silver and silver chloride followed conventional lines. Vacuum weights are given.

The Atomic Weight of Neodymium.

NdCl₃ dried at 450°.

Sample.	NdCl ₃ , g.	Ag, g.	NdCl ₂ : 3Ag.	At. wt. Nd.	AgCl, g.	NdCl _a : 3AgCl.	At. wt. Nd.
Ī	2.27815	2.94163	0.77445	$144 \cdot 273$	3.90844	0.58288	144.274
Ι	2.49290	$3 \cdot 21892$	0.77445	$144 \cdot 273$	4.27688	0.58288	$144 \cdot 273$
II	3.18825	4.11686	0.77444	144.268	5.47000	0.58286	$144 \cdot 266$
II	3.59299	4.63933	0.77446	144.276	6.16424	0.58288	$144 \cdot 272$
		Avera	ge 0·77445	144.272		0.58288	$144 \cdot 272$
			Fused	I NdCl ₃ .			
I	3.63095	4.68846	0.77445	144.270	6.22951	0.58286	$144 \cdot 267$
11	4.31489	5.57154	0.77445	$144 \cdot 273$	7.40277	0.58288	$144 \cdot 272$
11	3.95113	5.10171	0.77447	$144 \cdot 279$	6.77882	0.58288	$144 \cdot 274$
		Avera	ge 0·77446	144.274		0.58287	144.271
			Average of a	all 144·273			

The average of all the experiments agrees with that found in 1911 by Baxter and Chapin, and with the International value.

Aston (*Proc. Roy. Soc.*, 1934, A, 146, 46) from abundance ratios and packing fraction found 143.5. Two additional isotopes have recently been found by Dempster (*Physical Rev.*, 1937, 51, 289) and Mattauck and Hauck (*Naturwiss.*, 1937, 25, 781). The latter have revised Aston's abundance ratios and find the atomic weight 144.29.

EUROPIUM.—Baxter and Tuemmler (J. Amer. Chem. Soc., 1938, 60, 602) have published further details on the analysis of europous chloride (see eighth report of this Committee). Material found spectroscopically, by King, to be pure was crystallised as nitrate, precipitated as oxalate, and crystallised as trichloride. The chloride was converted into dichloride by drying and fusion in hydrogen and hydrogen chloride. After solution and oxidation comparison with silver was carried out. For correction to the vacuum standard the density of the dichloride was determined, 4.87.

		· · · · · · · · · · · · · · · · · · ·	
EuCl ₂ , g.	Ag, g. 1	EuCl ₂ : 2Ag.	At. wt. Eu.
2.37130	$2 \cdot 29561$	1.032971	151.960
3.08194	2.98354	1.032981	151.962
$2 \cdot 81858$	2.72847	1.033026	151.972
4.88934	4.73340	1.032945	151.954
4.71094	4.56053	1.032981	151.962
4.76278	4.61057	1.033013	151.969
4.18924	4.05537	1.033011	151.968
2.96223	$2 \cdot 86766$	1.032978	151.961
	Average	1.032988	151.963

The Atomic Weight of Europium.

Kapfenberger (Z. anorg. Chem., 1938, 238, 273) also has analysed europous chloride. From a rare-earth fraction consisting chiefly of samarium and gadolinium salts with about 1% of europium, the europium was precipitated as europous sulphate by electrolysis, and this process was many times repeated until examination of the X-ray spectrum (Noddack) showed only 0.03-0.04% of gadolinium and 0.02-0.03% of samarium. Further purification involved precipitation with oxalic acid and crystallisation of europic chloride. Anhydrous chloride was prepared in some experiments by gradual heating of the trichloride in dry hydrogen and hydrogen chloride below the melting point of the trichloride; in others by final fusion in the same atmosphere. Analysis by comparison with silver was carried out as described by Baxter and Tuemmler except that Kapfenberger determined the silver chloride also. Weights are corrected to vacuum.

The Atomic Weight of Europium.

EuCl ₂ , g.	Ag, g.	EuCl ₂ : 2Ag.	At. wt. Eu.	AgCl, g.	EuCl ₂ : 2AgCl.	At. wt. Eu.
1.60119	1.55044	1.032733	151.908	2.06015	0.777220	$151 \cdot 895$
$2 \cdot 15842$	2.09010	1.032687	$151 \cdot 899$	2.77705	0.777235	151.900
2.59610	$2 \cdot 51389$	1.032702	151.902	3.34016	0.777238	151.900
2.94429	2.85104	1.032707	151.903	3.78795	0.777278	151.911
2.52095	2.44115	1.032690	$151 \cdot 899$	$3 \cdot 24349$	0.777234	$151 \cdot 899$
$2 \cdot 29944$	$2 \cdot 22660$	1.032713	151.904	2.95844	0.777251	151.904
	Average	e 1.032705	151.902		0.777243	151.901

The discrepancy between the two determinations by Baxter and Tuemmler and by Kapfenberger is far beyond the experimental error and presumably is to be explained on the basis of impurity in one or both samples. The mass spectroscopic value apparently lies between the two. Aston estimates the abundances of the two europium isotopes as 151 Eu, 50.6%; 153 Eu, 49.4% and the packing fraction as -4×10^{-4} . Dempster (*Physical Rev.*, 1938, 53, 64) has recently found Aston's packing fractions to be about 2/10,000 too large.* With the above abundances, the packing fraction -2×10^{-4} , and the conversion factor 1.00027 the atomic weight of europium is 151.917. Because of these discrepancies no change in the atomic weight of europium is made in the Table.

LUTECIUM.—Hönigschmid and Wittner (*Naturwiss.*, 1937, **25**, 748) find the atomic weight of a specimen of lutecium (Welsbach) to be 174.96 by analysis of the chloride. Noddack was unable to find appreciable impurity except 1.18% of ytterbium. The atomic weight corrected for ytterbium is 174.98. The mass spectrographic value is uncertain, for though Aston found lutecium to be a simple element, Gollnow reports 1.5—2.5% of either 173Lu or 177Lu.

LEAD.—Baxter and Kelley (J. Amer. Chem. Soc., 1938, 60, 62) have compared lead from St. Joachimsthal pitchblende with that from cerussite (Wallace, Idaho). Purification of both samples included crystallisation of the nitrate and the chloride and distillation in quartz in hydrogen chloride. Comparison of lead chloride with silver followed the conventional method. Weights are corrected to vacuum.

Isotopic analysis of the St. Joachimsthal lead by Nier is as follows : ²⁰⁸Pb, 21.56%; ²⁰⁷Pb, 11.74%; ²⁰⁶Pb, 66.12%; ²⁰⁴Pb, 0.58%. With the packing fraction $+1.5 \times 10^{-5}$

(Nier, J. Amer. Chem. Soc., 1938, **60**, 1571) and the conversion factor 1.00027 the atomic weight of this specimen is found to be almost identical with the above chemical value, 206.51.

The Atomic Weight of Lead.

PbCl ₂ , g.	Ag, g.	PbCl ₂ : 2Ag.	At. wt. Pb.	PbCl ₂ , g.	Ag, g.	PbCl ₂ : 2Ag.	At. wt. Pb.
	Ce	russite.			St. Joa	chimsthal.	
4·81912 2·45187 1·55822	3·73859 1·90209 1·20877	1·28902 1·28904 1·28910	$\begin{array}{c} 207{\cdot}205\\ 207{\cdot}209\\ 207{\cdot}222 \end{array}$	1·59548 2·75039 3·77378 2·70109 4·40976	1·24121 2·13878 2·93499 2·10070 3·42962	1.28542 1.28596 1.28579 1.28580 1.28580 1.28579	206·428 206·545 206·506 206·510 206·517
	Avera	age 1·28905	$207 \cdot 212$			1.28575	206.500

Nier (J. Amer. Chem. Soc., 1938, 60, 1571) by mass spectrographic analysis has found the isotopic composition of common leads to vary over a considerable range, although the atomic weight computed from isotopic abundances diverges appreciably from the International value 207.21 only in one case out of ten, that of lead from Joplin, Mo., U.S.A.

		Geo- logical	To	otono ob	undono		Moon	Atomic	weight.
	Course of load	age,	15	otope at		es.	mass	Dhrei	Chemi
No.	locality.	years ×10−6.	204.	206.	207.	208.	number.	cal.	cal.
1	Galena, Great Bear Lake	1300	1.000	15.93	15·3 0	35.3	207.243	207.218	207.206
2	Galena, Broken Hill, N.S.W.	950	1.000	16.07	15.40	35∙5	$207 \cdot 242$	207.217	
3	Cerussite, Broken Hill, N.S.W.	950	1.000 1.000	$15.92 \\ 15.93$	$15.30 \\ 15.28$	35·3 35·2	$207 \cdot 242 \\ 207 \cdot 241$	$207 \cdot 217 \\ 207 \cdot 216$	207.21
4	Galena, Vancey Co N C	600	1.000	18.43	15.61	38·2	207.229	207.204	$207 \cdot 209$
5	Galena, Nassau Germany	240	1.000	18.10	15.57	37.85	$207 \cdot 231$	$207 \cdot 206$	207-21
6	Cerussite, Fifel Germany	240	1.000	18.20	15.46	37.7	207.228	$207 \cdot 203$	207.20
7	Galena I, Ioplin Mo	230	1.000	21.65	15.88	40·8	$207 \cdot 203$	$207 \cdot 178$	207.22
8	Galena II, Ioplin Mo	230	1.000 1.000	$21.60 \\ 21.65$	15.73 15.75	40·3 40·45	$207.200 \\ 207.200$	$207 \cdot 175$ $207 \cdot 175$	
9	Galena, Metalline Falls Wash	80	1.000	19.30	15.73	39.5	207.228	207.203	207.21
10	Cerussite, Wallace Idaho	80	1.000	15.98 16.10	15.08	35.07 35.45	207.239	207.214 207.217	207.21
11	Wulfenite and vanadinite, Tuscon Mts Arizona	25	1.000	18.40	$15.13 \\ 15.53$	38·1	$207 \cdot 229$	207.204	207.22
12	Galena, Saxony, Germany		1.000 1.000	17·34 17·38	15·47 15·44	$37{\cdot}45 \\ 37{\cdot}3$	$207 \cdot 240 \\ 207 \cdot 238$	$207 \cdot 215$ $207 \cdot 213$	

The value 207.21 is retained for the table, although in the future it is apparent that the geological occurrence of common lead must be taken into account so far as its atomic weight is concerned.

TABLE I.

INTERNATIONAL ATOMIC WEIGHTS, 1939.

	Sym-	At.			Sym-	At.	
	bol.	No.	At. wt.		Ďol.	No.	At. wt.
Aluminium	Al	13	26.97	Neon	Ne	10	20.183
Antimony	Sb	51	121.76	Nickel	Ni	28	58.69
Argon	Α	18	39.944	Niobium			
Arsenic	As	33	74.91	(Columbium)1	Nb (Cb)	41	92.91
Barium	Ba	56	137.36	Nitrogen	N` ´	7	14.008
Beryllium	Be	4	9.02	Osmium	Os	76	190.2
Bismuth	Bi	83	209.00	Oxygen	0	8	16.0000
Boron	В	5	10.82	Palladium	\mathbf{Pd}	46	106.7
Bromine	Br	35	79.916	Phosphorus	P	15	30.98
Cadmium	Cd	48	112.41	Platinum	Pt	78	$195 \cdot 23$
Cæsium	Ċs	55	132.91	Potassium	ĸ	19	39.096
Calcium	Ċa	$\overline{20}$	40.08	Praseodymium	Pr	59^{-0}	140.92
Carbon	Č	6	12.010	Protoactinium	Pa	91	231
Cerium	Če	58	140.13	Radium	Ra	88	226.05
Chlorine	ČĨ	17	35.457	Radon	Rn	86	222
Chromium	Čr	24	52.01	Rhenium	Re	75	186.31
Cobalt	Čo	27	58.94	Rhodium	Rh	45	102.91
Copper	Cu	29	63.57	Rubidium	Rh	37	85.48
Dysprosium	Dv	66	162.46	Ruthenium	Ru	44	101.7
Erbium	Er	68	167.2	Samarium	Sm	62	150.43
Europium	Ēu	63	152.0	Scandium	Sc	21	45.10
Fluorine	Ĩ	9	19.00	Selenium	Se	34	78.96
Gadolinium	Gd	64	156.9	Silicon	Si	14	28.06
Gallium	Ğa	31	69.72	Silver	Ag	47	107.880
Germanium	Ge	$3\overline{2}$	72.60	Sodium	Na	ñ	22.997
Gold	Au	79	197.2	Strontium	Sr	38	87.63
Hafnium	Ĥf	$\overline{72}$	178.6	Sulphur	ŝ	16	32.06
Helium	Ĥe	2	4.003	Tantalum	Ťa	73	180.88
Holmium	Ĥõ	67	163.5	Tellurium	Те.	52	127.61
Hydrogen	Ĥ	1	1.0081	Terbium	ŤĎ	65	159.2
Indium	Ĩ'n	49	114.76	Thallium	ŤĨ	81	204.39
Indine	Ť	53	126.92	Thorium	Ťĥ	90	232.12
Iridium	Īr	77	193.1	Thulium	Ťm	69	169.4
Iron	Fe	26	55.84	Tin	Sn	50	118.70
Krypton	Kr	36	83.7	Titanium	Ti	$\frac{30}{22}$	47.90
Lanthanum	La	57	138.92	Tungsten	ŵ	74	183.92
Lead	Ph	82	207.21	Uranium	τ	92	238.07
Lithium	Ĺ	3	6.940	Vanadium	v	23	50.95
Lutecium	Lu	71	175.0	Xenon	Xe	54	131.3
Magnesium	Mo	12	24.32	Vtterbium	Vh	70	173.04
Manganese	Mn	25	54.93	Vttrium	v	39	88.92
Marcury	Ho	80	200.61	Zinc	Źn	30	65.38
Molybdenum	Mo	19	05.05	Zirconium	$\frac{Dn}{2r}$	40	01.92
Neodymium	Nd	1 2 60	144.97		21	τv	01 24
neouymnum	nu	00	1 11 41				